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Why a Watermelon?
If you go to the supermarket to purchase a watermelon, how do you tell 
it is ripe?

When considering buying a watermelon, you want to know the internal 
characteristics (i.e., whether it is ripe or not), but you are only able to 
observe the outside. Stars pose a similar problem.

Unfortunately, we want to know more about a star than whether it is 
ripe or not. This poster will walk through the theory of stellar structure, 
then illustrate how models compare to observational data.

You knock on it! If the watermelon 
sounds hollow, then it is ripe. If 
it sounds solid, then it still needs 
more time.

Comparison Of Stellar Structure Models to Observational Data

[1]  Basic Equations of Stellar Structure
Stellar structure models are built using 5 basic equations:

Equilibrium
dP

dr
=

✓
GMr

r2

◆
⇢

We know that stars are stable, as they live for billions 
of years without collapsing. Gravity constantly pulls the 
outer layers of the star towards the center, so a pressure 
must be exerted outwards to counteract it. That is what 
the equation describes. The quantity in parentheses is the 
acceleration due to gravity at a specific radius.

Energy Generation This equation describes how energy is generated within 
the star. The quantity in parentheses is the amount of 
mass within a spherical shell at radius r, while e is the 
amount of energy generated per kilogram. e will change 
based on what fusion process is happening at different 
layers of the star.
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Mass Continuity
This equation is simple: the amount of mass enclosed 
within a radius r increases as r increases.dMr

dr
= 4⇡r2⇢

Energy Transport
Energy generation via fusion in stars happens near the 
core, yet photons emerge from the star’s surface. The 
energy generated near the core is transported to the 
surface via two different methods: radiation or convection.

Energy transport will occur via whichever method is most 
efficient: if the gas is highly opaque, convection will be 
favored.

dTrad

dr
=  3

16σ

⇢

T 3

✓
L

4⇡r2

◆
Radiation

Here, s is the Stefan-Boltzmann constant, and k is the 
mean opacity.
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Here, CV and CP are specific heats for constant volume 
and pressure, and m is the average molecular weight. 
Convection is assumed to happen adiabatically: no heat 
is lost to the outside during the process.

[2]  Additional Equations
Above we have 5 equations of stellar structure, but 8 unknowns: P, M, 
L, T, k, r, e. We must find 3 additional equations.

Equation of State (EOS)

This relates density and pressure. The first term comes from the ideal 
gas law, and the second is from radiation pressure.

Opacity and Energy Generation

Mean opacity, k, and energy generation per kilogram, e, are generated 
from other models, and are taken as givens. They are functions of r, T, 
and Xi, the number densities of various elements (H, He, Li, etc.) within 
the layer of the star.

With these three other equations, the system is solvable.
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[3]  Solutions
Except for very specific opacity and energy generation models, the 
stellar structure system of equations does not have an analytic solution. 
Instead, it must be numerically integrated through the following steps. 
For each step, we address conditions within a layer of the star at radius 
r from the center:

1. Define Xi for the layer (this composition depends on the evolutionary 
state of the star we are interested in, i.e. whether much of the layer 
has been converted into something besides H + He).

2. Determine k and e for the layer using Xi and r and T from the previous 
layer.

3. Determine which energy transport method is most efficient (you can 
do this from the determined k).

4. Use the four fundamental equations above to determine P, M, L, T for 
the layer.

This is usually done via an iterative process, where surface boundary 
conditions (total mass, luminosity and radius) are chosen, and then 
integrated to see if core boundary conditions are met (M, L = 0). If this 
is not the case, we change one of the outside parameters (M, L, R) and 
try again.

[4]  A Spherical Cow in a Vacuum
Physicists’ love of ideal cases is well known, and is apparent in the basic 
equations stated above. What non-ideal effects are we glossing over?

General Relativity: The Newtonian gravity model that is used above 
(see Equilibrium) begins to break down at stellar masses. To be more 
accurate, we must use general relativity formulas for gravity in our 
equations. While messier to write, integrating this into our models is not 
difficult.

Coulomb Interaction: The above models assume that the star 
is an ideal gas. We know this is not the case for gases at the high 
temperatures and pressures inside many stars. We must take into 
 account the electromagnetic forces between ions within the star.

Degeneracy Pressure: Only one fermion (electron, proton, neutron) 
may occupy a particular quantum state at a time. With high densities 
inside stars, this manifests as an outward pressure, adding to the photon 
pressure already present.

Special Relativity: At certain temperature and pressures, the ionized 
electrons within the star begin moving at appreciable fractions of the 
speed of light, necessitating special relativity considerations.

[5]  Testing the Models
There are several published stellar structure 
models in wide use today. To the right, we show 
four of the most popular models, and compare 
them to observational data of the star cluster 
M67 (shown in grey).

Equations that determine opacity (k above), are 
usually written separately, and there are several 
opacity codes that are widely used. The opacity 
code used is noted along with what non-ideal 
effects are included in the equation of state.

Many stellar structure models use equations that 
are only valid for certain masses of stars. We 
break up the underlying physics into high and low 
mass ranges to the right. The transition occurs 
near the dashed black lines.

The plots to the right are Color-Magnitude 
Diagrams (CMDs), which are observational 
versions of the Hertzsprung-Russel Diagram. 
The vertical axis decreases with increasing star 
brightness, while the bottom axis increases with 
decreasing temperature (hotter stars are on the 
left).

PARSEC
(Bressan et al. 2012)

High Mass Parameters
Opacity Code: OPAL

EOS: “FreeEOS” (CI+DP+SR)

Low Mass Parameters
Opacity Code: AESOPUS

EOS: “FreeEOS” (CI+DP+SR)

Dartmouth
(Dotter et al. 2007)

High Mass Parameters
Opacity Code: OPAL
EOS: Ideal Gas + CI

Low Mass Parameters
Opacity Code: A&F
EOS: “FreeEOS” (CI+DP+SR)

Padova
(Girardi et al. 2002)

High Mass Parameters
Opacity Code: OPAL

EOS: Ideal Gas + DP + CI

Low Mass Parameters
Opacity Code: A&F

EOS: “MHD” (CI+DP)

YREC
(Deokkeun et al. 2006)

High Mass Parameters
Opacity Code: OPAL
EOS: OPAL (CI)

Low Mass Parameters
Opacity Code: A&F
EOS: “SCVH” (CI+DP+SR)

(Empirically Calibrated)

[6]  Conclusions
There are several important things illustrated by the comparison plots:

1. Despite differences in EOS physics, all the models work extremely 
well on high-mass stars. Since the opacity codes are all the same, 
this means that degeneracy pressure and special relativity effects are 
very weak (or nonexistent) for these stars. This makes sense since 
high-mass stars are, generally, not very dense.

2. Most models do not work well for very low-mass stars. The PARSEC  
and Padova models vary greatly, while Dartmouth varies much less. 
The YREC system seems to work well, but it is hard to determine why. 
The YREC system has empirically calibrated CMDs, so it is difficult 
to determine whether the goodness-of-fit is due to the underlying 
model physics, or simply the translation from stellar parameters to 
observables shown in the CMD.

3. The AESOPUS opacity code is very similar to that of A&F. This means 
that, for low mass, PARSEC and DARTMOUTH have very similar 
physical equations, yet they are widely discrepant on the CMDs. This 
deviation can be from one of two effects: the Xi values are different 
between the two models, and may cause the same equations to 
give different results, or the atmosphere model (going from stellar 
parameters to observable properties) of PARSEC gives incorrect 
values.

We plan to test these models on many more clusters in order to help 
solve some of these issues.


