

MASS SEGREGATION

- Cluster forms when large cloud of gas collapses
 - Isotropic

Example Cluster: # of 3M_{sun} and 2M_{sun} vs Radius

- Stars interact gravitationally
 - Equipartition of energy
 - KE = 0.5mv^2

BINARY SEGREGATION

Binary formation is similar

• Initially isotropic

Radius (pc)

Example Cluster:

- Binaries are more massive than singles
 - Should become more centrally concentrated

CURIOUS CASE OF NGC 1818

 NGC 1818 is a young, massive cluster in the Large Magellanic Cloud

- Elson et al. 1998 studied binary % vs radius for 2 - 5.5 M_{sun}
 - Binaries are mass segregated

from Elson et al. 1998

CURIOUS CASE OF NGC 1818

- NGC 1818's binary % was studied again in 2013 by de Grijs et al.
 - Binary % for stars with 1.3 1.6 M_{sun}
 - m₂/m₁ > 0.55 (mass ratio)
- This plot is cumulative! Ugh.
 - Binary % increasing with radius
 - Anti-mass segregation?

COMPUTERS!

- The best way to figure anything out in astronomy is on a computer
- Things evolve over a **long** time
- Geller et al. 2013 simulated cluster, checked binary % at various ages

COMPUTERS!

- What's going on here?
 - Binary % distribution is initially flat
 - "Weak" binaries disrupted easily
 - More interactions in core = more binaries disrupted
 - Evolution is interplay between disruption + mass segregation
- NGC 1818 is young: supports de Grijs. What did Elson et al. see?

WHAT IS GOING ON?

- de Grijs et al. state that their binary detection method (also used by Elson et al.) cannot work outside 1.3 - 1.6 M_{sun} range.
 - Elson et al. results likely due to contamination
- Both studies don't overlap the same mass region. Can they both be right?
 - Let's find out!

BINOCS

- NGC 1818 has observed stars between 0.6 6 M_{sun.} Why can we only use 0.3?
 - Method used by de Grijs + Elson is quite susceptible to errors.
 - Can only detect binaries with mass ratio > 0.55!
- My research involves a new method of detecting binaries: BINOCS
 - Binary INformation on Open Clusters using SEDs
 - Everything in astronomy must have a clever acronym
- Vast improvement over previous methods:
 - Can use entire mass range (0.6 6 M_{sun} for NGC 1818)
 - Minimum mass ratios ~ 0.3

OPEN CLUSTERS

- We want to look at how binary % evolves
 - Do we see the same thing as simulations?
 - Take 2 clusters with vastly different ages

RESULTS I

Computed binary % as a function of radius for both clusters:

RESULTS II

- BINOCS can work for a large range of masses.
- How does radial trend change with mass?
- M67: all mass ranges segregated

RESULTS II

- M37:
 - A Stars: segregated
 - F Stars: In-Between
 - G Stars: antisegregated
- Vastly different results for different mass ranges!

DOESTHIS MAKE SENSE?

- It appears that different mass stars evolve with different timescales
 - Same chronological age, different dynamical age
- This makes sense:
 - Larger stars have larger "gravitational cross-sections"
 - Higher cross-section ➤ higher # of interactions
 - Higher # of interactions > quicker equipartition of energy

NGC 1818 REVISITED

- de Grijs et al. brings up a good point about Elson et al.'s results being contaminated
 - This does not mean Elson et al.'s observations are wrong
- Does not mean 2 results are incompatible
 - 2 5.5 M_{sun} stars may be dynamically old
 - 1.3 1.6 M_{sun} stars may be dynamically young

SUMMARY

- BINOCS method was able to determine binary fractions for a large range of masses
- Using 2 open clusters, we were able to "solve" the problem of NGC 1818
 - Chronological age ≠ dynamical age

QUESTIONS?